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Spin Fluctuation Theory of Magnetism in Co(SXSe with Pyrite Structure

]-x)Z

MiKio NAKAYAMA

Recently the theory of metal magnetism has been developed considerably
by using the concept of spin density fluctuations. Though the Hartree-Fock
approximation is only reasonable at low temperature, the spin fluctuation
theory is a good approximation at high temperature and reduces to the
Hartree-Fock approximation in the low temperature limit.

The purpose of this paper is to explain the metamagnetism and the
magnetic susceptibility in Co(SxSe]_x)2 by the spin fluctuation theory with
the use of the same model density of states. Also, the results of the spin

fluctuation theory are compared with those of the Hartree-Fock approximation.
§.1 Introduction

To explain the magnetic prorerties of d-band electrons, both the local
moment model and the itinerant model have been used. That is to say, the
magnetism of d-band electrons has two opposite properties, local and itinerant.
For example the saturation moment per atom at Tow temperature is not integral
in units of Bohr-magnetons. This is the property of the itinerant or band model.
But the susceptibility at high temperature obeys the Curie-Weiss law which
is considerd to be the property of the local or Heisenberg model.
Experiment tells us that the electrons in the d-band are itinerant. . The
width of the d-band is very narrow, about a few eV, and the exchange energy which
is the origin of the electron correlation is the same order as the band width.
Then we must start from the itinerant model with the strong correlation, and consider
why the itinerant electrons show the Tocal moment like properties-at high temperature.
The band theory based on the HF theory gives good results in the ground

state, but is not resonable at finite temperature. By recent investigations

thermodynamical properties of the magnetism aré described in terms of spin density
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fluctuations. Using the functional integral method for the study of spin density
fluctuations, the alloy-analogy can be realized and the spin density fluctuations
are treated as static random potentials. For this reason the coherent potential
approximation ( CPA ) can be used.

In this paper we want to explain the magnetic properties of Co(S Se] x)2

theoretically with the use of only the model density of states. In §.2

the experimental data of Co(S Se )2 by Adachi et al. in 1979 is shown.

In §.3 the model density of states is determined so as to explain

the metamagnetism, and by HF theory the susceptibility at finite temperature

~ is calculated for the comparison with the spin fluctuation theory. In §.4

the theoretical formalism of the spin fluctuation theory is described.
In §.5 the susceptibility is calculated from the model density of states by
the spin fluctuation theory. 1In §.6 some discussions are given.
§.2 Experimental data of Co(S_ Se, .)
x T 1-x72
The magnetic properties of Co(SxSe]_x)2 with the pyrite structure were
. . . . 5).6 . . .
investigated experimentally by Adachi et a].)1n)deta11. Fig. 2-1 and Fig. 2-2
are copies of J.Phys.Soc. Japan 46(1979)1474 by Adachi et al..
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In the range of .89 < x < 1.0 Co(SxSe]_x)2 is ferromagnetic. And the

saturation moment per cobalt atom is .855 Hp for CoS, and it decreases gradually

2
with increasing Se content. In the range of x < .89 the paramagnetism with
large susceptibility occurs. For x=.86 a peculiar so-called métamagnetism is
found in paramagnetic state. In this case when the external field is small,
the magnetic moment is proportional to the external field, but at a transition

- field the momet suddenly saturates. |

At finite temperature the susceptibility of Co(SxSe with small x has

1-x)2
a maximum. For example in CoSe2 the maximum exists at about 40°K. Near the
metamagnetism composition the instability of the susceptibility is found at about
30°K, and the susceptibility shows a maximum near 80°K. In the whole system
the susceptibility at high temperature obeys the Curie-Weiss law in which
the Curie constant takes a value corresponding to ]'5‘“8 local moment per cobalt
atom up to 300°K, and 1 Mg local moment above 300°K.
The electrons contributing to the magnetism are d-band electrons which
are seven per cobalt atom. But for the reason of cubic symmetry of pyrite
sturucture illustrated in Fig. 2-3, the d-band with five-fold degeneracy splits
into two bands, which are the de-band with three-fold degeracy and the dy-band with
two-fold degeneracy, as illustrated in Fig. 2-4. Thus we may consider only the

dy-band and one electron for the main origin of magnetism. So our band is

a quarter filled band.
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§.3 Metamagnetism and the model density of states
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As described in subsequent sections, the spin fluctuation theory reduces
to HF thory at low temperature. And the magnetic properties at low temperature
are well explained with the use of HF theory. This section is mainly devoted
to explain metamagnetism witnh the use of the model density of states by HF
theory. At the same time we determine the parameters in the model density of states
To tell the conclusions at first, the metamagnetism is explained by
considering the ¥ree energy as a function of the magnetization. We adopt the
density of states as shown in Fig. 3-1 and calculate the free energy F as a
function of the magnetization M. The results are illustrated in Fig. 3-2 for
various values of the external field B,. As illustrated in Fig. 3-3,
‘when M 1is small and then the densities of states at the Fermi levels of both
up and down spins are 1ow'(52), the curve of F(M) is convex downwards. But when~
M is large and the densities of states at the Fermi levels of up and down -spins
are low (p2) and high (p]) respectively, the curve of F(M) is convex upwards.
In actual calculations we adopt the model density of states as illustrated in
Fig. 3-4 and get better fit with the experimental data of the magnetization
curve |
The metamagnetism occurs from the following reason. F(M) with a parameter B,
» where B, is the transition

t t
field. When B, < Bt’ F(ML) is smaller than F(MH), and ML is proportional to B,.

has two local minimum points, ML and MH’ near B,=B

As B, increases, the difference between F(ML) and F(MH) decreases. And when Bo=B,

the state jumps from ML to MH’ Thus the metamagnetism is realized.
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From the definition,the free energy F as a funtion of M is given by
-BF -BH
e BF_ Tr[ S(Zﬁonfo-N)G(Zzoonﬁd-M) e B ] ...(3.1)
where s is the number operator of electrons with the Bloch wave number K and
spin o, and N is the total number of electrons. In the Hamiltonian we adopt the intra

atomic interaction only, namely we use the Hubbard Hami]tonian;S)

H= Ho+ H'

Ho= ZE0(8?6-08°)nﬁ0 S.._ = %Z an.

H'= UH= Uzono = Unn 2 cugs, 2, (Cndggn, O (3.2)
I jnj/'k j+ 4 jnj - j jz E) nj— Unjo ° e -

For simplicity, non-degenerate band is considered. B, is the external field, and

njc is the number operator for the Wannier state electrons in j-site with spin o.

Splitting F into two parts, we obtain

F= Fo+ AF
- Fo - Ho
e BFo. Tr[ S(ZKO"EO'N)é(ZKbO"Eg'M) e B °]
_ U
AF= fO < HI >u du ...(3.3)

swhere < «-. >, means the statistical average:

“ee = : cee -B(H°+UH ) - N ' _BF
< U Trl e I d(ZzanO N)6(ZK60nFO M)] /7 e".

In HF approximation, AF becomes

2 2
)

v U _ v _u
AF= fO < HI >U=0 dU= U< HI >U=0f 2 (N"-M Iz ...(3.4)

"BFo

where N, is the number of sites. e can be calculated easily with

the use of simple identities;

NY= 1 Hotie -Bu(N-Z+ n»> )
s(zfdnfo N) 2mRe fuo-iw du e ko"ko (3.5
My=_ 1 Eotix -BE(M-z+» on ...(3.5
G(Zﬁdonzo M) 2Rz féo-iw de e ko™ ko)

and the following approximation which is adequate when t of eq. (3.6) is
macroscopic or thermodynamical variable.

-BF. [totim g4y o-BF(t) ¥ Bf(to) .

e = fto'?w

- £
with condition; o |=¢,=0 - ...(3.6)
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In eq. (3.5) p and & can be interpreted as the chemical potential and the
inner field,respectively. Because in the following section we will use these
techniques presented in eq. (3.5) and eq. (3.6), we dared to use such methods
in this section. The methods of eq. (3.5) and eq. (3.6) are called. the Lagrange
multipliers and the saddle point approximation respectively.
After the calculations of the previous page, we have the following result.
F()= uveM- 6715 5 de p(e)in(reePlEMOBrE))y, T2 y2)
with conditions; N= LS de p(e)(1+e8(€—u_6(8°+£)))_]

M LS decp(e)(]+e8(€~p—0(B°+g)))—! ...(3.7)

If we want the susceptibility x within HF theory, x is derived from

-1 §_.§£1
oM 9M'M=0

And with taking note of u and £ as functions of N and M, we have the well

known HF- susceptibility;

-1
L B 7
X = 1 de p(e)pel(E7H) (14B(EH))=2

P

with condition; N= 2/ de p(e)(1+eB(EM))™T ...(3.8)
Up to the present, we have considered the formulations at finite temperature.
But HF theory is not a good approximation at high temperature, so we can't expect
that this theory will explain the properties of Co(SXSe]_x)2 at high temperature.
Thus we use these formulations only in low temperature limit, and explain the
metamagnetic properties at low temperature. Within this 1imit HF theory is the
same as the spin fluctuation theory. From eq. (3.7) and eq. (3.8) we have the

followirg equations with a step of B » .

I

F(M)= -MBo+ £_/**%B de p(e)et Z—(NZ—MZ)

N= Zcfu+OB de p(e)
M= ngp+oB de op(e) , B=Bot§

%= o) . , e (3:9)
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In numerical calculations we use the density of states per site, then we must
interpret F, N, and M as per site and replace I with U. The effects of two- fold
deéeneracy are only the replacement of U » g~and o(e) » 2p(e). With the use of
the local density of states as illustrated in Fig. 3-4 the best value of independet
parameters, namely, P> Pos U, and A were determined so as to fit in the experimental
data of the magnetization curve of metamagnetism ‘at low temperature. As the |
experimental data we selected the susceptibility x, the transition field Bt’ and
two points ( P] and P2 on linear pert ) as Fig. 3-6. The decided model density of
states is presented in Fig. 3-7. Fig. 3-8 is the comparison between the experimental
magnetization curve and the theoretical one from the model density of states.
Using this model density of states we calculated F(M) concretely. It is presented

in Fig. 3-9. In our calculations, for simplicity the band width is normalized to 1 eV.

This model density of states is obtained from only the data of Co(S,Seq_, ),

with x = .86 . For other mixing ratio the shape and the width of the density of
states must be changed. However, to make calculations simple, we make here the

following simple but reasonable assumption:

The shapes and widths of the model density of states are the same for all
mixing ratio x, instead of this, we change the exchange interaction

energy U effectively.

For the later comparison with the spin fluctuation theory, the susceptibility
at finite temperature with HF theory was calculated and given by Fig. 3-10. The
maximum of susceptibility exists at about 350°K. And the curves don't obey the
Curie -Weiss law at high temperature. Here the effective interaction U are determined

by the Tow temperature susceptibility of the experimental data.

mixing ratio x effective interaction U
0 .78784
.2 .80524
4 .83660
.6 .86186
.86 .90198

»
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§-4 Spin fuluctuation theory with the aid of the coherent potential approximation

4-1 Formulation of functional integral method

16)
In many-body problems of solid states physics, onesimple identitys
//E:f+w d e-gize-ZVF'age - eBﬁze //§: ® dg e //__€+/8 3) €
B -00 B
...(4.1.1)

made the posibilities of new approximations. This identity can transform the square

term in operater @ in the exponent. into a linear term in it.

In general the grand potential @ 1is important in order to investigate the

thermodynamical quantities. From the definition

...(4.1.2)
where H is the Hamiltonian and N is the total number operater of electrons.

Let the Hamiltonian of a system be divided into the one of a non-interacting part

and the one of a interacting part. Then we can write Q as

H= Ho,+ H'
Q= QotAQ
Q = Tr e_B(HO-uN)

o~ BAQ fg H'(T)dt 5

=< Tt e R R
H'(1)= eTHo e-TH° . ﬁo_ Ho uﬁ
< eee >z Tr( eee e BH°) / Tr e -, , ...(4.1.3)
where Tt 1is the imaginary-time ordering operater, H'(t) is the interaction
representation of H', and < -+« > means the average about ﬁo.
If H' is small compared with H,, H' is considered
as a perturbation to H,. But in our problem H, and H' are Of the same order.

For example in §.3, the value of band width corresponding to H, is 1 eV, and

the interaction energy U corresponding to H' is-about .9eV. So we can't use the




perturbation theory, and we need the other approximation.

To use the identity in eq. (4.1.1) , we express H' in the form of

H'= -gal . ... (4.1.8)

Substituting eq. (4.1.4) into eq.(4.1.3) and dividing the integrated resion into

infinitesimal intervals, we have

n 2
e B qim < 17 By BA()e B
oo n 1

Here we use the identity descrived in eq. (4.1.1), and get

U]

S [

i ...(4.1.5)

‘ 2
% vin < T [0, /E rag(e,)] e TR A Al e

n->o

= [ 8¢(1) e-fg %ﬁ(T)ZdT < Tt e-fgz/ﬁ a(t)e(t)dt

>

fﬁﬂﬂsﬁmﬂﬁ/§MﬂHL”JLLﬂ
n->oo° )

where the Feynmann's path integral formu]ati&%)is used. The eq. (4.1.6) is the

exact form and the starting point of approximations.
4-2 Application of functional integral method

With the use of the formulation mentioned above, we can transform the

Hubbard Hamiltonian ;

H= Ho+ Hl
Ho= zfyoefnﬁyo _ )

= y_ 2 - § oA = l— P ...‘4-2-];
= 2255y JEJ'Y( iy gJ'Y) ’ gjy‘ 2°P MNyvo ( )

where almost all the notations are the same as eq. (3.2). H is generalized
to take account of the degeneracy of orbitals. The subscript y is added for
the w-fold degeneracy of orbitals, so y takes the values y= 1,2,+++,w. For
simplicity all orbitals in dy-band are considered to be equivalent, and we
introduce U and J which are the effective Coulomb and the effective exchange

energies, respectively. To satisfy the rotatiomal invariance of the theory,
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we used Eiy which is a unit vector in arbitrary direction for each site.

And Sp means the trace in the spin space, and & is Pauli's spin vector.
. . U
Comparing eq. (4.2.1) with eq. (4.1.4), ZE—nJY and (gJY JY are

corresponding to 82. Since there are two kinds of square terms in the Hamiltonian,
we must introduce two kinds of field, namely, charge fields n; (T) and exchange
fields ng(T). Then with the use of the fomulation in §.4-1 we can write off

the following equations.

e‘BAQ= I 5g(T)6n(T) e-BW(E,n)

-8¥(£,n)= ~g=5 SLES ()P, ()2 1de- gv, (2,m)

e (En)_ ( 1p o725 JoI26) S5 (1) E (x)¥2E,n, (1)ny () ]dr
E y(1)= SJYEJY(T) )

5500 Ty 885, (1) 1

Sn(t)= HJYGnJY(T) / Cy

where we averaged in the direction of ng to restore the rotational invaliance

!
'Uﬂﬁ
fo ]

s ...(4.2.2)

of the theory.

For simplicity » we excute for njy(T) the so-called saddle point
approximation which was stated in eq. (3.6) of §.3 . Here we note that the
saddle point approximation about microscopic quantities , for example ”jy(T)
and ng(T), is a poor approximation at high temperature. But we adopt
this approximation about n assuming that the charge fields scarcely fluctuate

compared with the exchange fields owing to the charge neutrality. Then we have
with condition; SY =0 —> n. (1)= —E-E' << n, (1)>>
> én; (7) Jy ™2 v

<< oo >>= < T eoe g JYIS[ZC § (T) g (T)+2C2 Y(T)n (T)]dT é-BY]

..(4.2.3)
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The charge fields an(T) are decided from the self consistent equation mentioned

above. But if the neutrarity of charge is maintained, we have

- N i ;
<< an(r)>>— N No: number of sites
- B N :
an(T)— 7 €2 Now for all j and vy
In this simple case, the charge fields only increases the energy with a constant
2
E%—%— . Consequently after omitting this constant energy, the following simplified

equations are obtained.

e B s2() e-BW(E)
m

-B¥(g)= - EXJY (T) dr- gY,(¢)

e B¥1 = < 10 72500 2°1§jY(T)'ng(T) dv , | ...(8.2.4)

From eq. (4.2.4), statistical averages, correlation functions, and the

dynamical susceptibility are exactly given ( Appendix ) by

<3500 5= A< (1) >

JB
< TT§ NONNCOES jé-[< Bip(DE(t) > 55 8518 (8(r-1")]
(g,2w )= T Eﬂpk E E >- < E >< g >- flg]
X\ 9,20, Y§ J qym~-qdm qym -qém 2w
2 __ 1.2 -1qR
gQYm ,N;zjngm J
(
r 2 __B iw T
Siym- 8l0 Egy(T) e m dr ...(4.2.5)

where the average of any functions of £ are defined by

< f(g) >z fe(n)f(e) e PY(E) ; oBAQ ...(4.2.6)
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4-3 Model and approximations

At first we adopt the static approximation, with which t-dependence of 2
is neglected. In this sense our theory is classical. And for simplicity

g's are considered to be independent of orbitals. Then we have

After the Fourier transformation, these equations become

B fdg°“édgq e-nwioz-nwzjagjz < e‘23°1W§°'g°‘ZBEHWXj§j'533 S
§°52j§j s CE E} / No »
where the prime means to omit the terms with q=0 . The macroscopic quantities
Z, can be approximated by the saddle point approximation with the condition
of - §°=-%-c]<< $.>>. Here we cpnsider only paramagnetic phase. Then we may put
<< §o>>=0 . So the following equations -are obtained.

)
e P g ™300y BY
9 °q
— >
e B¥y - ¢ e‘23C1WZj§j'55j > ...(4.3.1)

As mentioned in §.4-2 , we must not use the saddle point approximation
about the exchange fie]d,ﬁgj directly. In the spin fluctuation theory , the

most important macroscopic variable is x , defined by

1 >
TR agj _ ...(4.3.2)

From eq. (4.2.5) this valiable is related with the squared local spin density as

X

2._ 1 2 3w
< gj >= -Z—U(ZTTXW -—B) .

where we considerd < x > = x , and the system to be isotropic.

...(4.3.3)
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The macroscopic variable x can be approximated by the saddle point
approximation. To carry out this calculations, we must express W] as a
function of x. Then we expand W] in terms of S8, and assume that the coupling
among the spin fluctuation modes is mainly local and the higher order terms

can be expressed in terms of x. We adopt the following model functional for W]

of the isotropic system.

¥y= 200 01 (x)62 - 68+l () |
ZEJ 24 X (x )g E_q +iloL(x) ...(4.3.4)
with
Zqu(x)=0

The methods of calculating Xq(x) and L(x) with CPA will be discussed in §.4-4
and §.4-5. Here with the use of the model functional in eq. (4.3.4) , we

express e BAY o5

~TNo + ! ° -mNoBL
o~BAQ NoBWX 2naquq(x)€q E_q mNoBL(X)

]

= fdx/m! dE 8(x- BZ T .E q) e
S(xgtebq lg) * SO e“"”°6“"‘ﬂ'}>§zégq'g-q), ...(4.3.5)

'and the delta function cou]d be rewritten with the Lagrange multipliers

stated in §.3 . Then the integrations of dfa can be carried out exactly,

and because other parameters , x and X, are the macroscopic variables from

the definition and the conjugate variable of x respectively, the saddle

point approximation in x and A may be a reasonable method. So we have

-BAQ= 2mNoBJIAX . -mNoPwWX -TNoBL(x) -32'1n[2J(x X (x)]

3 o]
4 NoBqu X-Xq

with conditions; x=

X
- Vyye OL N e
A= 55 ) Fmeeate 1 XX ++-(4.3.6)
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With the use of iL defined by }Ls Eg-—k, the useful forms of the conditions

are given by

"=__]_al-_+ 3 ! 1 -B—X—q
XL 723 ax T ZuNopw “q 1-28 3 X
X~ X (x)+ X, "
9 “q L
-3 o1 - 3 1 ...(4.3.7
Xx= 2ﬂN°szq od — e p(0)6+0 do ( )
1-2= x
W q
X
5= —— -1 , 0= 1-—4

1
» P(o)z +=2'6(o-0.) .
2%)(_ q Xo No™q q

Since x is a macroscopic valiable we may safely replace x with the average

value, then x= < x >= Nl§£&<gq'g-q>' As compared with eq. (4.3.7), we get
[]

<£%0 5= N B , = ...(4.3.8
gqg.‘q Zﬂw ]_zJ ié o 15y,z ( ) )

|

Substituting eq.(4.3.8) into eq.(4.2.5) , we can get the following formula for

the dynamical susceptibility Xq per site as a function of x.

X~ N g Wo<g gl >-w € 7 ]

where we used <gg>=0 in paramagnetic phase.
To obtain the temperature dependence of x , we need a distribution

function P(g). Here supposing a simple distribution function;

P(O)z Ez%;2voz2<0>-0; ’ < oese >z f o-oP(G)dO

T X
<o>= < 1- Xq/ Yo>= 1- iy R ...(4.3.10)
Xo
we have
B'] = §T§¥%7 (|<o>|+s+ /62+26I<0>|) . ...(4.3.11)

If Xq(x) and L(x) are provided as functions of x concretely, the susceptibility

as a function of temperature is derived self-consistently with the use of previous

equations. The uniform susceptibility is considered as the limit of q -~ 0.
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4-4 The coherent potential approximation condition of ¥

1
In this section, we calculate W] as a function of x directly within the

single-site approximation. If we simplify the exchange fields to have the

same magnitude for all sites;

5%3; BX for all j , ...(4.4.7)
then our problem becomes the problem of electrons in the randomly directed
fields. This situation becomes obvious from eq. (4.3.1). For our purpose

eq. (4.3.1) may be rewritten as

W]= wW1'
- . - -
2'z e B¥1 = 7p o BHy / Tr e BHo
Hy= Zﬁd(sﬁ-p)nﬁb+tr ijnj

Ho= Tgolep g

where the prime denotesthe quantities per orbital, and v is a parameter which
becomes 1 afterward. And tr means the trace on the site and spin spaces.
Interestingly Vj plays a role of a local random potential in the Hamiltonian.

In order to calculate W]' , we differentiate W]' with respect to v,]3)

-——a I= - —-§- l: b4 L N ] - LN _BHV -BH\,
7 ¥ 5y InZ'= tr Vj<njo>v PS>y Trleese PV]/ Tr e s

where <nj0>V may be expressed by the temperature Green function of Hy. Then

with the use of well known properties of the Green function, the Green function of

Hy may be expressed by the Green function of Ho.in the following ways.

+
v -8 G.. (t=07) : Gjio(T)E —8<Traj0(1)aic(0)>v



- 16 -
tr G(T=0')V=thr G(iwm)v e~ %00 tw = %’(2m+1)

“m
=L tr (1-g(<w )vV)_]g(imm)V e m0

SLom ... (4.4.3)
= o5 ¢p In(1-gwV) e w0

ov'm
zk(ﬁ -R.)
g ()= by S
g m’ No k zwm-eK+u

+ . . . s . .
where a  and a are the creation and the annihilation operater respectively, and g
is the Green function of Ho. Then W]' is given by the folloing equation after

the integration with v.

W]' = -B'] z tr In(1-gV) e~ %0

The coherent potential approximation can be obtained from eq. (4.4.4) with

..(4.4.4)

replacing the random potential in Green function by the medium coherent potential I.

such as

67 (2)= g7 (2) - x(2) . . (4.4.5)
and we split G into the site-diagonal part F and the non site-diagonal part 6.

Then 1-gV can be rewritten as

1-gV= g6~ (1-6t)[1-F(V-2)T"7  : t= (V-2)[1-F(V-£)]

and W]' becomes

ly_||= \P]I(]) + [ \y]!(z)_py_l'(?’).;-... ]
w]'(])= -3']zmtr[]n g -In G +In(1-F(V-2))] e-ime_

W]'-W]'(])= -B_]thr 1n(]-ét) e~ Tup0 R ...(4.4.6)

where t is a so-called t-matrix, and W]'(n) includes all terms which are related with

n sites. Compering eq. (4.4.6) with our model functional, the site-diagonal term W]'(l)
corresponds to L(x) , and W]'(Z) corresponds to Xq(x). To decide the coherent
potential I within the Timits of the single-site approximation, we minimize the

site-diagonal term W]'(]) with respect to . Then we have
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SEJ 8z tr(F2 aF)t w0 g ...(4.4.7)

and note that only t depends on sites, we get the well known CPA condition;

) tj(z)= 0 z:complex , ...(4.4.8)
as a sufficient condition. When we substitute F, £, and Vj into eq.(4.4.8),
consider only 62§= Bx as an important parameter, and neglect all other combinations,
that is to say, g(ag? 6&?),@ 65?, z 5&?, and so on, then we have the following self
consistent eqation of & within thg limits of the paramagnetic phase.

= -F(Z -ﬂJx)

F(z2)= f Eizgﬁg%(ES'de : ...(4.4.9)

With the use of eq. (4.4.9) , tj has the form of

ag? 553
= (14Fz)"]
+ 2
6 -8t ) ...(4.4.10)

4-5 Calculation of QL(x) and Xq(x) with CPA condition

As mentioned in §.4-4, L(x) and Xq(x) are obtained from W]’(]) and W]'(Z)
respectively such as

moL(x)= wey* (V= wg™ 2 tr[Tn g -Tn 6 +1n(1-F(v-5)] &80
- 25 X, (X)Gg 53 = WW]'(2)= -wB—]thr 1n(]-ét) et 0

B it terms related
with 2-sites

...(4.5.1)

In eq.(4.5.1), the sum of m can be transformed by the well known formula

- LWms
about the Fermi Green function f(z) as ) o~ tm Iﬂzm+Dt
Cz
2 f(iw ) e 0 = B g g flz) e P20 |
mf 2ni ¢ ]+ Bz | |
- oo, 1 ] |
_fBr‘ J:.ood Im f(vll)"’bé) (S > 0+ ;

..(4.5.2)
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In this paper we approximate EL as

v 18
T ol ...(4.5.3)

And substituting eq.\(4.5.l) into eq. (4.5.3) , we have

L %;Im tr[In g -1n G +In(1-F(V-2))]

X; = f dw

L 2n2JN° ey
With the use of CPA condition, we have the final result of QL as
1

1+e

Im F2(1+Fz)"]

= _ 1
XL™ 27 J_odw Bw

= ok /0w FP(14) 7). ...(4.5.4)
Next we calculate X (x) To calculate X (x) we expand the second equation

of eq.(4.5.1) and co]]ect the terms related w1th 2-sites

=100 ~tw 07
31 31(X)6g GE - ZnJ mtrz K (Gt)" e |2—sites terms
N o0 K oW 0"
- 2wJZiji SPZK =] 2K (GJ1t1G1JtJ) m
J#i

- Sp In(1-6,.t.6. .t.) e 2¥n0

2ﬂJ m Jj>i Jititigsd
= - W o

ZﬂJ m J>]1n[] Sp(GJ1 163 5 J)+det(GJ1tIG1JtJ)]

...(4.5.6)
Where we used Sp[1n A]= In[det A], and the properties of 2x2 matrix, det(1-A)
=1-Sp A +det A . After expantions of the Togarithmic function, we retain only
the bilinear terms in t-matrix, and with the use of eq. (4.4.10), we have

§100= 706,164 5(1+Fx) 2 Py ...(4.5.7)

0

After the Four1er transformation, using eq. (4.5.2), we transform the sum about m .-

into the integration about w. We have

1 -2
Xq(x) 2“ S dw;:—gmlm G k(1+F2) . ...(4.5.8)

To calculate Xq(x) we need the band stracture of the materials. Byt xo(x) can

be obtained from only the density of states. THe definition of ék(w) is

L]



G ()= G -F = 1 p(w)
Gk(u))— Gk F m -/ dw m . ...(4.5.9)

Then the following equation is obtained.

_ W 1 aF 2 -2
Xo(x)= 5 fdw - Bwlm(az F&)(1+4Fz)
e
x W oF 2 -2
= 5 Sdw Im(az FE)(1+Fz) ...(4.5.10)

In the low temperature 1limit the coherent potential is small compared with 1,

then we have

Xo= Xg * XF 7S dw Idt = 2 p(u) » iwhen wel . ... (4.5.11)

This result is the same as HF theory at 0°K . The difference of the coefficient
. _ 1 _ s
comes from the unit of M and B,, M= ZZﬁaon?o and M= 2E00n+0 are the definitions

k
in the spin fluctuation theory and HF theory respectively in our case.

- 19 -
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§.5 Numerical calculations

Numerical calculations have been carried out with the use of the same density
of states as was given in §.3 to explain the metamagnetism, and the results are
shown in Fig. 5.1 — 5.9.

We show in Fig. 5.1 a graph of <o> vs. B, where Bz 4mwJx. At low temperature
<o> is negative, and with increasing amplitude of the spin fluctuations, <o> becomes
positive. This is consistent with the observation that Co(SxSe]_x)2 with small x
are paramagnetic, having negative Weiss constant, while those with x= 1 show
ferromagnetism. X, and XL as a functions of B are shown in Fig. 5.2 and Fig. 5.3,
respectively.

We first discuss the paramagnetic compounds with x < 0.86. The calculated
inverse susceptibilities are shown in Fig. 5.5. The susceptibilities at high
temperature evidently obey the Curie-Weiss law. The dashed line indicates the
slope correspond to Curie constant of 1 Mg classical local moment at each site.
The effective moment is 1.5 Hp in CoSe2 and reduces with increasing x, for 1.34 Hp
at x= 0.86. These are larger than the observed values. The reason will be
discussed later.

The maximum of the suseptibility of CoSe2 appears at about 30°K. This is
near the maximum of the experimental data. The observed maximum of Co(SXSe]_x)2
with x= 0.86 at 80°K is not explained by this calculation. The instability
occurs near the metamagnetic region x= 0.86 at 10°K, and the detailed situations
near the metamagnetic region are shown in Fig. 5-7. This type of instability
seems to exist in actuality as is seen in the experimental results in Fig. 2-2.

We need to make more detailed study of this point in order to clarify the mechanism
of the instability.

Next we consider the systems which become ferromagnetic at low temperatures.
When Curie temperature is small, the inverse susceptibility curves are straight
from the starting point or Tc. But with increasing with Tc, 1/x becomes concave

upward near Tc. For J= 1.6 we calculate 1/x up to 500°K as shown in Fig. 5-8,

L4
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and the inverse susceptibility curve break off a little at about 250°K. For the
reason of the simple model density of states, the magnetization tends to saturate
easily with increasing effective interaction J at 0°K, as shown in Fig 5-9.

It was not possible to give a quantitative explanation of the saturation moment

at 0°K and the Curie temperature in a consistent'way.
§.6 Discussions

The purpose of this paper was to explain the metamagnetism and the temperature
dependence of the susceptibility at the same time with the use of the simple
density of states. Although various specific charactristics of the magnetic
suscepfibi]ity of Co(SXSe]_x)2 system have been reproduced qualitatively well,
quantitative comparison was not quite satisfactory. We will remark here just
two points which suggest the posibility of improvements

In our calculations the effective moment derived from the Curie constant
is larger than 1 Mg even over 300°K. The reason of this can be understood from
Fig. 5-4. In Fig. 5-4 the root mean square of the local spin density approaches
1 g as temperature goes up and exceeds>f Mp at higﬁ temperatures. Such a situation
occurs because of our simple neglect of the effective charge fluctuations which
allows the amplitude of the local spin fluctuation to increase beyound 1 Mg~ 2)
This situation may be improved by taking account of the effect of charge fluctuations.

Next our model density of states may be too simple to apply to a real system.

As a matter of fact Asano has recently made a band calculation of transition

metal di-chalcogenides with pyrite type crystal structure. The calculated density
of states differs significantly from the one adbpted here, although there is the same
qualitative similarity. It should be worth while to repeat the same calculation

as given here with the use of Asano's density of states. Such a calculation

is now under way.
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Appendix
Here we derive the eq.(4.2.5). The first equation comes from

<"3‘1‘(s<r')>= T3, (x") e'B(H'“N)] / e

Mt (o)l e B Ty 0bi T e o 3, (1) €T 0% Sal ) e,

with replacing giG(T') by a differential operator ?E-——ng——), and after differentiate
2¢c,8¢. (1!
by parts, we get the first equation. 1718

The second equation is given by the same way ,too. The last equation is

15)

derived with the use of the Kubo 1inear response theory . By this theory

the susceptibility can be expressed with the retarded Green function as

Xji()=65i(w) i 65 (w) f+: 65 () €™ gt
635 (t)= = 0(t) < [, &3, (¢),5; 6335001 >

= iHot/h_ —iHot/h_
6—§jy(t) e ‘ngy e .
And the retarded Green function G?i(w) can be expressed by the thermal Green

function with analytic continuation as

R _ . _
Gji(w)— Gji(wm) .t w , = — (2m+1)

I
m Y B
- B iw T
Gji(wm)— f0< Tszﬁgjy(T)Zsﬁgis(T)> m dt
H ~7H
8S. (1)= ™ &8, °
SJY(T) e 6§JY e

With the use of 6§jY(T)= ng(T)-<§jY(T)> , we have

X1 (tu) =L s ghe T35 (035(1)> - B, (1> <5 (x> e@n(TT Dgearr

After the substitution of the first and the second equations and the Furier

transformation, we have the final result.
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Figure Captions

Fig. 3-7 The model density of states with the parameters determined by the

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

3-8

(,',)
O

experimental data of the magnetization curve of metamagnetism at
Tow temperature.

The comparison between the experimental magnetization curve of
Co(SXSe]_x)2 with x= 0.86 and the theoretical one from the

model density of states in Fig. 3-7.

The magnetization dependence of the free energy F as a function of
the external field Bo,, where Bt is the transition field as the same

as the one in Fig. 3-8.

3-10 The inverse susceptibilities as functions of temperature for each

5-2
5-3

5-6

5-7

mixing ratio x in Co(SXSe]_x)2 by thé Hartree—Fock approximation.
The random field dependence of <o>.

The random field dependence of Xo.

The random field dependence of XL

The root mean square of the local spin density as a fuction of the
temperature. o

The inverse susceptibilities as functions of temperature for each
mixing ratio x in Co(SXSe]_x)2 by the spin fluctuation theory.

The dashed line indicates the slope corresponding to Curie constant
of 1 Mp classical local moment at each site.

The inverse susceptibilities as fucntions of temperature for the
systems which become ferromagnetic at low temperature.

The inverse susceptibilities as functions of temperature near the
metamagnetic region.

The inverse susceptibility as a function of temperature for the
exchange interaction J= 1.6 up to 500°K.

The exchange interaction dependence of the saturation moment at 0°K.
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